Простейшие бегущие огни всего на одной микросхеме без программирования

Данная статья поможет сделать полезную в быту вещь, порадовать себя и своих близких, разобраться в основах радиотехники. Для изготовления бегущих огней вам понадобится совсем немного времени. Необходимые радиодетали можно купить в специализированных магазинах, и стоят они недорого.

Простейшие бегущие огни всего на одной микросхеме без программирования

Необходимые материалы и приспособления:

Простейшие бегущие огни всего на одной микросхеме без программирования

Схема и принцип действия

Мигающий светодиод выдает один импульс в 0,5 секунды. Этот импульс поступает на вход микросхемы. Микросхема считывает этот импульс и отправляет его поочередно на выходы. Каждый импульс идет на новый выход, последовательно от первого до десятого. После десятого выхода, счетчик сбрасывается, и процесс начинается заново. Таким образом получается эффект бегущих огней.

Простейшие бегущие огни всего на одной микросхеме без программирования

Изготавливаем простые бегущие огни

Простейшие бегущие огни всего на одной микросхеме без программирования

Светодиоды могут быть расположены свободно и держаться за счет проводов. Но для удобства, лучше изготовить корпус для наших огней. Возьмем кусок пластика, просверлим в нем десять отверстий. Отрежем излишки, оставив тонкую полоску.

Простейшие бегущие огни всего на одной микросхеме без программирования

Разгибаем усики светодиодов, и вставляем их в отверстия пластика.

Простейшие бегущие огни всего на одной микросхеме без программирования

Контакты светодиодов находящиеся с одной из сторон припаиваем к перемычке.

Простейшие бегущие огни всего на одной микросхеме без программированияПростейшие бегущие огни всего на одной микросхеме без программирования

Выступающие за перемычку контакты отрезаем.

Простейшие бегущие огни всего на одной микросхеме без программированияПростейшие бегущие огни всего на одной микросхеме без программирования

Далее производим сборку схемы по рисунку.

Простейшие бегущие огни всего на одной микросхеме без программированияПростейшие бегущие огни всего на одной микросхеме без программированияПростейшие бегущие огни всего на одной микросхеме без программированияПростейшие бегущие огни всего на одной микросхеме без программирования

Подаем напряжение от 5 до 12 Вольт на выводы схемы. Для этого можно использовать блок питания или обычные батарейки и аккумуляторы. Наслаждаемся результатом.

Простейшие бегущие огни всего на одной микросхеме без программирования

Рекомендации

Если у вас под рукой только обычные пальчиковые батарейки – по 1,5 Вольта, для достижения необходимого напряжения их можно объединить. К плюсу одной батарейки подключаем минус второй, к плюсу второй – минус третьей и так далее. Это называется – последовательное соединение. Для достижения напряжения 6 Вольт, нам необходимо соединить последовательно 4 батарейки по 1,5 Вольта.

При подключении бегущих огней от блока питания, необходимо убедится в полярности и уровне напряжения. Обычно вся информация нанесена на корпус блока. Если таких сведений нет, необходимо воспользоваться вольтметром. В вольтметре контакты подписаны, обычно плюс красного цвета, минус черного. При правильном подключении к блоку питания прибор покажет положительное значение, например 12 Вольт. Если плюс и минус перепутаны, то показания вольтметра будут отрицательными, то есть со знаком минус, – 12 Вольт.

В качестве микросхемы IC 4017, можно использовать отечественный аналог – микросхему К561ИЕ8. Мигающий светодиод лучше использовать красного цвета – у него выше напряжение импульса. Двухцветные мигающие светодиоды использовать нельзя, с ними схема работать не будет.

Смотрите видео

Техника безопасности:

  1. Обязательно соблюдайте полярность подключения устройства.
  2. Если на блоке питания нет маркировки и вам нечем проверить напряжение, которое он выдает, использовать его нельзя.
  3. Перед использованием всю схему бегущих огней необходимо спрятать в какой-либо корпус или заизолировать во избежание коротких замыканий.

Как сделать бегущие огни на светодиодах?

Категория: Светодизайн

Создание ленты бегущих светодиодов – это отличный вариант использования источника света в декоративных целях. Своими руками сделать бегущий огоньдостаточно просто, тем более что в итоге изделие может обладать разными эффектами, включая затухание света и поочередную работу элементов.

Бегущие огни на светодиодах

Микроконтроллер ATtiny2313 для бегущих огней

Данное устройство относится к серии AVR микроконтроллеров бренда Atmel. Именно под его управлением чаще всего делают бегущую световую ленту, поскольку эксплуатационные характеристики модели достаточно высокие. Микроконтроллеры просты в программировании, многофункциональны и поддерживают реализацию разных электронных устройств.

ATtiny2313 сделан по простой схеме, где порт для вывода и ввода имеет идентичное значение. Выбрать программу (одну из 12) на таком микроконтроллере очень легко, ведь он не перегружен лишними опциями. Модель выпускается в двух корпусах – SOIC и PDIP, причем каждый вариант обладает идентичными характеристиками:

  • 8-битные общие регистры в количестве 32 штук;
  • возможности 120 операций за один тактовый цикл;
  • flash-память внутри системы на 2 кБ с поддержкой 10 тысяч циклов стирания и записи;
  • внутрисистемная EEPROM на 128 байт с поддержкой 100 тысяч циклов;
  • 128 байт встроенной оперативки;
  • 4 ШИМ-канала;
  • счетчик-таймер на 8 и 16 бит;
  • встроенный генератор;
  • удобный для разных целей интерфейс и другие функции.

Микроконтроллер ATtiny2313

Микроконтроллер имеет два вида в соответствии с энергопараметрами:

  • классическая модель ATtiny2313 обладает напряжением от 2,7 до 5,5 В и силой тока до 300 мкА на частоте 1 МГц в режиме активности;
  • вариант ATtiny2313А (4313) обладает характеристиками в 1,8-5,5 В и 190 мкА при той же частоте.

В режиме ожидания устройство имеет энергопотребление не больше 1 мкА.

Как уже было указано, память микроконтроллера оснащена 11 комбинациями световых схем, а возможность выбора всех комбинаций светодиодов последовательно – это и есть 12 программа.

Схема бегущих огней и принцип её работы

Создаваемая схема бегущих огней на светодиодах базируется на размещении микроконтроллера в центре. Все его порты вывода соединяются со светодиодами:

  • порт B или PB0-PB7 используется полностью для контроля над свечением;
  • максимально задействованы три вывода от порта D (PD4-PD6);
  • также работают PA0 и PA1, поскольку они свободны за счет реализуемого внутреннего генератора.

Вывод №1 – PA2 или Reset – не является активным звеном схемы, поэтому резистором R1 подсоединяется к цепи питания ATtiny2313. Плюсовая часть питания 5 В идет к выводу №20 – VCC, а минусовая  — №10 (GND). Полярный конденсатор C1 устанавливается для предотвращения сбоев и гашения помех в работе МК.

Учитывая, что каждый вывод имеет малую нагрузочную способность, целесообразно ставить на них светодиоды с номиналом до 20 мА.

Подходят, как классические smd3258, так и led’ы повышенной яркости в DIP корпусе. Суммарно их должно быть 13 штук. Функция ограничения тока возлагается на резисторы R6-R18.

Работа схемы контролируется посредством посредством переключателя SA1, кнопок SB1-SB3 и цифровых входов PD0-PD3, которые подключаются через резисторы R2, R3, R6 и R7. Такая конструкция позволяет включать мигание светодиодов в 11 различных режимов, задавая конкретную программу кнопкой SB3. А с помощью переключателя SA1 изменяется скорость мигания. Для этого:

  1. SA1 переводится в замкнутое положение.
  2. Скорость изменяется кнопками SB1 (ускорение) и SB2 (замедление).

Обратите внимание, что при размыкании переключателя данными кнопками меняется яркость свечения светодиодов от еле заметного мерцания до максимальной мощности.

Варианты сборки

Существует два доступных и относительно простых варианта сборки бегущих огней: на печатной или макетной плате. И в том, и в другом случае желательно за основу брать схему в PDIP корпусе на панельке DIP-20. При этом нужно, чтобы остальные компоненты также были в DIP-корпусах.

При сборке на макетной плате будет достаточно модели 50×50 мм с шагом в 2,5 мм. Светодиодыможно будет разместить не только на самой плате, но и на внешней линейке, подключив их в схему с помощью гибких проводов.

Миниатюрная  печатная плата более практичный вариант для тех случаев, когда бегущие огни на светодиодах своими руками делают для активной дальнейшей эксплуатации.

Проект печатной платы

К примеру, когда они устанавливаются на велосипед или автомобиль. В этом случае понадобятся такие компоненты:

  • односторонний текстолит 55×55 мм;
  • конденсатор 100 мкФ-6,3В;
  • DD1 – Attine 2313;
  • резистор 10 кОм-0,25 Вт±5% (R1);
  • 17 резисторов 1 кОм-0,25 Вт±5% (R2-R18);
  • 13 светодиодов LED диаметром 3 мм (цвет не важен);
  • 3 кнопки KLS7-TS6601 или аналог (SB1-SB3);
  • переключатель движковый ESP1010 (SA1).

Радиолюбителям с практическим опытом сборки печатных плат лучше взять для этой схемы Attine2313 SOIC c SMD резисторами. За счет этого общие габариты схемы уменьшатся почти в два раза. Можно также отдельным блоком установить сверхъяркие SMD светодиоды.

Бегущие огни на 12V

Эта схема бегущих огней на 12 вольт широко известна в сети, так как имеет очень простую и понятную конструкцию. Генератором режима выступает таймер импульсов, а счетчик, подсчитывая их, подает на выходы соответствующие логические уровни. Светодиодный элемент, подключенный к каждому выходу, загорается при логической единице и гаснет при нуле. Эффект бегущих огней создается за счет последовательного мерцания. Скорость «бега» задается генератором, работа которого контролируется номинальными параметрами конденсатора C1 и резистора R1.

Бегущие огни на 12V

Яркость светодиодов усиливается за счет увеличения подаваемого тока, но для этого их следует подключать через буферные транзисторы. Дело в том, что выходы счетчика не отличаются высокой нагрузочной способностью.

В этой старой схеме приведены советские обозначения компонентов и микросхем, но в наше время не сложно найти соответствующие им аналоги зарубежного производства.

Прошивка

Микроконтроллер ATtine 2313 рекомендуется прошивать с помощью самодельного программатора, который подключается через RS-232 или популярный PoneProg2000. Перед началом прошивки надо выставить фьюзы так, как указано на рисунке.

Ставим галочки перед прошивкой

Для более четкого представления о работе прибора рассмотрим некоторые его основные узлы. Начнём  рассматривать работу бегущих огней с микросхемы К155ЛА3 которая является набором из четырёх логических элементов 2И-НЕ изображённого на рис.1.

К155ЛА3

1,2,4,5,9,10,12,13 - входы X1-X8;3 - выход Y1;6 - выход Y2;7 - общий;8 - выход Y3;11 - выход Y4;14 - напряжение питания;

Мы используем только два элемента 2И-НЕ. Ниже приведённая схема генератора выдаёт чередование прямоугольных импульсов логического нуля и логической единицы показанных на графике.

Генератор

На генераторе предусмотрена регулировка скорости и продолжительности чередования логических импульсов с помощью R1 и C1.

Если к выводу 6 подключить светодиод через резистор 1 кОм – то мы увидим, что у нас получилась простая мигалка на микросхеме с регулируемой скоростью мерцания.Далее рассмотрим микросхему К155ТМ2 – которая включает в себя два независимых D-триггера, срабатывающих по положительному фронту тактового сигнала, к ней и осуществим подключение тактового генератора.

Условное графическое обозначение К155ТМ2 приведено на рис.2. На рис.3 приведена структурная схема и таблица истинности одного из элементов микросхемы, где каждый элемент состоит из четырёх элементов 2И-НЕ.

К155ТМ2К155ТМ2

А ниже приводится "расшифровка" выводов микросхемы:1 - инверсный вход установки "0" R1;2 - вход D1;3 - вход синхронизации C1;4 - инверсный вход установки "1" S1;5 - выход Q1;6 - выход инверсный Q1;7 - общий;8 - выход инверсный Q2;9 - вход Q2;10 - инверсный вход установки "1" S2;11 - вход синхронизации C2;12 - вход D2;13 - инверсный вход установки "0" R2;14 - напряжение питания;

Далее мы кратко рассмотрим работу одного каскада триггера изображённого на рис.4.

Работа одного каскада триггера

Подключим вывод 2 к инверсному выводу 6 и подключим к выводу 3 тактовый генератор. При поступлении логической единицы на вывод 3 на выводе 5 будет переключение на логическую единицу, при прохождении очередной логической единицы на вывод 3 - произойдёт переключение на логический ноль (вывод 5) и так будет происходить переключение до бесконечности.  На выводе 6 (который является инверсным) будет зеркальное значение 5-го вывода.

А бегущие огни составим из тактового генератора и четырёх элементов триггера (2 микросхемы К155ТМ2) рис.5

Бегущие огни из тактового генератора и четырёх элементов триггера

На схеме мы видим не фиксируемую кнопку S2 которая служит для переключения подпрограмм и селектор S1 которым осуществляется переключение основных программ. Если сделать небольшие изменения в схеме - отсоединить вывод идущий к 13 ноге D1.2 и подключить его к выводу 10 D1.2 и сделать то же самое на второй микросхеме, то изменятся и программы индикации (изменение отмечено на схеме пунктиром). Если использовать многосекционный селектор S1, то можно подключить отмеченное пунктиром изменение к селектору  и тем самым увеличить число программ.

В схеме используются лампочки напряжением 2.5-3.6 вольта, но если использовать светодиоды, то надобность в транзисторах отпадает (на схеме отмечено красным квадратом) и подключение светодиодов осуществляется к Т,Т1,М,М1,Р,Р1,F,F1 рис.5а.

Бегущие огни из тактового генератора и четырёх элементов триггера

Если использовать лампы на 220 вольт, то вместо транзисторов нужно подключить симисторы или как их ещё называют симметричные тиристоры, триодный тиристор или триак. Условное графическое обозначение симистора на рис.6

Симистор

Симистор можно представить двумя тиристорами, включенными встречно-параллельно. Он пропускает ток в обоих направлениях. Симистор имеет три электрода: один управляющий и два основных для пропускания рабочего тока.  Структура этого полупроводникового прибора показана на рис.6а. На рис.6 б внешний вид симистора КУ208.

На Рис.7 показана схема бегущих огней с симисторным управлением.

Схема бегущих огней с симисторным управлением

Собранный девайс изнутри и внешний вид устройства.

Бегущие огни

Бегущие огни

Используемые детали в бегущих огнях  можно заменить на импортные и отечественные аналоги: К155ЛА3 на SN7400, К155ТМ2 на SN7474N, транзисторы КТ315 на КТ342; КТ503; КТ3102; 2N9014; ВС546В, а КУ208 на BT134; BT136. Светодиоды можно применять любые. Стоимость деталей приблизительно составляет 60 - 100 рублей.

Данную схему легко переработать и изменить алгоритм работы.

Сама схема имеет минимум легкодоступных деталей, легка в сборке и при правильном монтаже в наладке не нуждается.

Список радиоэлементов

Скачать список элементов (PDF)

Мигающие гирлянды украсят любую территорию. Их приобретают в магазине или создают самостоятельно. Можно сделать бегущие огни на светодиодах своими руками. Правда, предварительно потребуется запастись необходимыми материалами.

Бегущие огни

Схема и принцип действия бегущих огней

Конструкция для огней может выполняться в аналоговой форме.

Для нее необходимы:

  • микросхема NE555;
  • дешифратор CD4017 (или 22);
  • токоограничивающие и подстроечные резисторы;
  • светодиоды;
  • фильтрующие конденсаторы.

NE555 выполняет роль генератора меандра, а дешифратор задает последовательность, в которой зажигаются светодиоды. Между 7-ым и 2-ым выводами микросхемы подключается переменный резистор. Изменяя его номинал, увеличивают или уменьшают скорость переключения светодиодов (скорость их «бега»).

К CD4017 подключают до 10 светодиодов одновременно (по схеме с общим анодом). Микросхема генерирует счет от 1 до 10, поочередно подавая сигнал на диоды. Так, например, создаются бегущие поворотники или указатели.

К выводам питания NE555 и CD4017 параллельно земле подключают фильтрующий конденсатор на 220 мФ.

Аноды светодиодов подсоединяют к общему проводу через подтягивающий резистор 1 кОм.

Схемам бегущих огней

Намного быстрее собрать такую же схему на микроконтроллере. Для этого понадобится программируемая плата (например, Arduino UNO, Nano или любая другая модель), к выводам которой следует подключить по схеме с общим анодом 8 светодиодов. Каждый огонь поворота подключается через подтягивающий резистор 330 Ом к земле.

Необходимо лишь написать программу для контроллера и прошить плату.

Инструменты и материалы

Для создания бегущих огней на «Ардуино» потребуются:

  1. Программируемая плата.
  2. Светодиоды.
  3. Токоограничивающие резисторы.
  4. Соединительные провода.
  5. Макетная или сборочная плата.

Если бегущие огни создаются не в качестве эксперимента, а для регулярного использования, то лучше их монтировать на универсальную, а не на макетную плату.

Для масштабных проектов 8 светодиодов недостаточно, поэтому используют светодиодную ленту WS2812.

Для ее подключения используют всего 3 провода:

  • сигнальный;
  • питание;
  • земля.

Также понадобится подключить между сигнальным выводом «Ардуино» и входом ленты 1 резистор 470 Ом.

Ардуино

Для сборки понадобятся паяльник, припой (если нужно жесткое соединение элементов), а также нож для снятия изоляции с проводов. Для работы с макетной платой никаких дополнительных инструментов не нужно.

Пошаговая инструкция по изготовлению

Сборка бегущих огней на 8 отдельных светодиодах производится так:

  1. Диоды монтируются в плату (припаиваются при необходимости).
  2. К ним подключаются резисторы (их либо вставляют в разъемы, либо припаивают к огням).
  3. Диоды подсоединяются к пинам «Ардуино» с помощью проводов.
  4. Резисторы общей точкой подключаются к выводу GND-платы.
  5. На микроконтроллер подается питание.
  6. Загружается прошивка.

Ленту подключают к питанию не от платы Arduino, а от стороннего источника питания, т.к. микроконтроллер может обеспечить максимальный ток 800 мА при напряжении 5 вольт, а этого хватит только для того, чтобы зажечь 13 светодиодов.

WS2812 состоит из RGB-диодов, каждый из которых потребляет 20 мА (т.е. суммарно 1 пиксель требует для работы 60 мА).

Для подачи энергии подойдет блок питания компьютера, в котором есть провода на +5 В и +12 В. Зная мощность P (стандартную величину устройства) и подаваемое напряжение U, рассчитывают ток (частное от деления P на U).

Резисторы

Прошивка и настройка

Для работы с 8 светодиодами загружают в «Ардуино» следующий скетч:

int last_pin = 10; //Кол-во светодиодов

//блок для инициализации входов-выходов и других исходных данных

void setup() {

for (int i = 0; i < last_pin; i++) // цикл

pinMode(i, OUTPUT); // инициализируем пины как выходы

}

// Основной цикл

void loop() {

for (int j = 0; j < last_pin; j++) { //перебираем пины с 0 до last_pin

digitalWrite(j, HIGH); //зажигание следующего светодиода

delay(300); //задержка 300мсек

digitalWrite(j, LOW); //гасим все светодиоды

}

}

Чтобы настроить диодную ленту на работу с микроконтроллером, нужно прошить его таким кодом:

#ifndef LUMAZOID_H

#define LUMAZOID_H

#if (ARDUINO >= 100)

#include

#else

#include

#include

#endif

typedef struct {

uint8_t baseColor;

uint8_t age;

uint8_t magnitude;

uint8_t rnd;

} peak_t;

#endif

Правила безопасности

При работе с электронными устройствами придерживаются следующих норм безопасности:

  1. Изолируют все токоведущие части, чтобы на них не попала вода, чтобы до них нельзя было коснуться оголенной частью тела. 800 мА не та величина тока, которую выдает, например, трансформатор Тесла, но не почувствовать ее трудно.
  2. Паяльником пользуются только в паре с удобной подставкой, на которую кладут инструмент после работы, иначе велика вероятность что-то расплавить, сжечь или обжечься.
  3. У диодной ленты все контакты для подключения лишены изоляции. Когда она находится в рабочем состоянии, нельзя касаться ее ни руками, ни металлическими предметами.

Паяльник и радиодетали располагают дальше друг от друга, чтобы случайно не сжечь чувствительные к перегреву элементы.

Полезные советы

Если подключить к микроконтроллеру не одну, а несколько светодиодных лент, то можно создать интересную иллюминацию, которую несложно запрограммировать.

Например, можно преобразовать любое видео в пиксельное изображение, все кадры закодировать 8 битами и с помощью сдвиговых операций выводить их на ленты. Последние образуют 1 большой экран.

В продаже имеется огромное количество различных мигающих цветными огоньками светодиодных девайсов, способных сделать ярче любой праздник. Зачем покупать стандартные светодиодные мигалки, когда намного интереснее за несколько часов своими руками собрать оригинальное и полностью функциональное устройство, способное переключать светодиоды в определенной последовательности, тем самым создавая эффект бегущих огней. Для начинающих радиолюбителей, эта самоделка будет замечательным проектом выходного дня.

На этом рисунке изображена схема бегущих огней на светодиодах.

Схема бегущих огней на светодиодах своими руками
Схема бегущих светодиодных огней на микросхеме NE555, CD4017, CD4022

Скачать схему бегущих светодиодных огней на микросхеме Скачать

Устройство состоит из двух микросхем, принцип работы очень простой. Задающий генератор импульсов выполнен на универсальной микросхеме NE555. Сигнал с генератора поступает на вход двоичного счетчика дешифратора CD4017 или CD4022 эти микросхемы аналогичные и полностью взаимозаменяемые. Микросхема имеет 10 выходов, к которым подключены светодиоды. При подаче тактовых импульсов с генератора импульсов на вход счетчика происходит последовательное переключение между выходами микросхемы.

Светодиоды зажигаются в строгой последовательности от 1 до 10 и поэтому получается эффект бегущих огней. Скорость переключения светодиодов регулируется за счет изменения частоты задающего генератора импульсов подстроечным резистором P1. Напряжение питания светодиодов устанавливается подбором сопротивления резистора R1. Схема питается напряжением от 5 до 15 вольт. Так же обратите внимание на нумерацию светодиодов на схеме. Если вы хотите, чтобы светодиоды зажигались один за другим, то разместите их по порядку указанном на схеме.

На этом рисунке изображена печатная плата бегущих светодиодных огней на двух микросхемах.

 Печатная плата бегущих светодиодных огней на двух микросхемах своими руками
Печатная плата бегущих светодиодных огней на двух микросхемах своими руками

Скачать печатную плату бегущих огней на светодиодах Скачать

Детали устройства легко помещаются на печатной плате размером 65х45 мм. Микросхемы для удобства я установил в DIP панельки, стоят копейки, в случае замены микросхемы не надо ничего паять.

Бегущие огни на светодиодах

Светодиоды с платой соединяются проводами. На каждый канал микросхемы можно подключить не более трех светодиодов. В своей самоделке решил поставить по два светодиода на каждый канал и разместить светодиоды один на против другого таким образом, чтобы получился круговой эффект вращения из двух точек. Вы можете размещать светодиоды в любой последовательности, создавать фигуры, вариантов много, фантазируйте…

Хочу заострить ваше внимание на том, что если будете ставить разноцветные светодиоды. На один канал можно ставить светодиоды, только одного цвета. Все потому, что у разноцветных светодиодов разное сопротивление и поэтому будет светиться только, тот у которого меньшее сопротивление. Конечно можно это дело исправить, если заменить резистор R1 перемычкой, а на каждый светодиод поставить отдельный резистор. Тогда все светодиоды будут светиться, как надо.

Светодиодные бегущие огни на микросхеме

Моей задачей было собрать автономное, карманное устройство, которое будет служить световым дополнением к музыкальному «Бумбоксу», поэтому светодиоды и плату с батарейкой, аккуратно разместил в пластиковом корпусе от электромагнитного реле. Светодиоды залил термо клеем. Таким образом приклеил печатную плату. Поставил выключатель и один диод IN4007 для защиты устройства от переполюсовки.

Бегущие огни на светодиодах

Получилось симпатичное карманное устройство, которое можно взять с собой и наслаждаться бегущими по кругу светодиодными огоньками.

Бегущие огни на светодиодах своими руками

А, что делать если хочется подключить большую нагрузку, например светодиодные ленты? Тогда придется немного усовершенствовать схему. На каждый канал надо поставить транзисторный ключ.

Схема транзисторного ключа

Скачать схему транзисторного ключа Скачать

В данной схеме хорошо работают практически любые транзисторы структуры n-p-n например: BD139, TIP41C, MJE13006, MJE13007, MJE13008, MJE13009, КТ815, КТ805, КТ819 и другие аналогичные подберите в зависимости от требуемой нагрузки. Все транзисторы надо закрепить на радиаторе, коллекторы транзисторов по схеме соединяются вместе, поэтому изолировать от радиатора не надо. Резисторы R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 подключите к выходам микросхемы. Питание схемы возьмите от общего источника питания.

Радиодетали для сборки бегущих огней на светодиодах

  • Микросхема NE555
  • Микросхема CD4017 или CD4022
  • Подстроечный резистор P1 на 50К
  • Резистор R1 1К, R2 22К
  • Конденсатор С1 220 мкФ 25В, С2 10 мкФ 25В
  • Светодиоды с напряжением питания от 2 до 12В

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать бегущие огни на светодиодах

Схемки все что выставлял раньше и сейчас - рабочие сто процентов, сам паял, подгонял детали. В схемах этих кстати, качество работы во многом зависит от транзисторов и обвязки, детали тут тоже подобраны по наилучшей работе.

Вот несколько схемок бегущих огней LED

Это этот же вариант, только с эффектом плавного розжига и затухания светодиодов.

И вот ещё очень полезная схемка для ЦМУ и СДУ. Поскольку сейчас, к сожалению, на аппаратуре нету линейных выходов, и звуковой сигнал приходится брать от выхода на колонку или наушники, то при изменении уровня громкости на магнитофоне, приходится регулировать общий уровень на цветомузыкального устройства. Вот эта схема позволяет избавиться от такой проблемы. На её выходе поддерживается определённый уровень сигнала независимо от уровня сигнала на входе, начиная конечно с какого-то определённого минимума.

Причём схема работает чётко, сигнал на выходе не искажается, испытывал её с автомагнитолой, то есть сигнал подавал на вход схемы с выхода на динамик. Автор: senya70

   Форум по LED

   Форум по обсуждению материала БЕГУЩИЕ СВЕТОДИОДНЫЕ ОГНИ

Среди десятков разнообразных светодиодных мигалок достойное место занимает схема бегущих огней на светодиодах, собранная на микроконтроллере ATtiny2313. С её помощью можно создавать различные световые эффекты: от стандартного поочерёдного свечения до красочного плавного нарастания и затухания огня. Один из вариантов того, как сделать своими руками бегущий огонь на светодиодах под управлением МК ATtiny2313, рассмотрим на конкретном примере.

Сердце бегущих огней

ATtiny2313

То, что AVR микроконтроллеры Atmel обладают высокими эксплуатационными характеристиками – всем известный факт. Их многофункциональность и лёгкость программирования позволяет реализовывать самые необыкновенные электронные устройства. Но начинать знакомство с микроконтроллерной техникой лучше со сборки простых схем, в которых порты ввода/вывода имеют одинаковое назначение.

Одной из таких схем являются бегущие огни с выбором программ на ATtiny2313. В данном микроконтроллере есть всё необходимое для реализации подобных проектов. При этом он не перегружен дополнительными функциями, за которые пришлось бы переплачивать. Выпускается ATtiny2313 в корпусе PDIP и SOIC и имеет следующие технические характеристики:

  • 32 8-битных рабочих регистра общего назначения;
  • 120 операций, выполняемых за 1 тактовый цикл;
  • 2 кБ внутрисистемной flash-памяти, выдерживающей 10 тыс. циклов запись/стирание;
  • 128 байт внутрисистемной EEPROM, выдерживающей 100 тыс. циклов запись/стирание;
  • 128 байт встроенной оперативной памяти;
  • 8-битный и 16-битный счётчик/таймер;
  • 4 ШИМ канала;
  • встроенный генератор;
  • универсальный последовательный интерфейс и прочие полезные функции.

Энергетические параметры зависят от модификации:

  • ATtiny2313 – 2,7-5,5В и до 300 мкА в активном режиме на частоте 1 МГц;
  • ATtiny2313А (4313) – 1,8-5,5В и до 190 мкА в активном режиме на частоте 1 МГц.

В ждущем режиме энергопотребление снижается на два порядка и не превышает 1 мкА. Кроме этого данное семейство микроконтроллеров обладает целым рядом специальных свойств. С полным перечнем возможностей ATtiny2313 можно ознакомиться на официальной страничке производителя www.atmel.com.

Схема и принцип её работы

В центре принципиальной электрической схемы расположен МК ATtiny2313, к 13-ти выводам которого подключены светодиоды. В частности, для управления свечением полностью задействован порт В (PB0-PB7), 3 вывода порта D (PD4-PD6), а также PA0 и PA1, которые остались свободными из-за применённого внутреннего генератора. Первый вывод PA2 (Reset) не принимает активного участия в схеме и через резистор R1 соединён с цепью питания МК. Плюс питания 5В подаётся на 20-й вывод (VCC), а минус – на 10-й вывод (GND). Для исключения помех и сбоев в работе МК по питанию установлен полярный конденсатор С1. схема

С учётом небольшой нагрузочной способности каждого вывода подключать следует светодиоды, рассчитанные на номинальный ток не более 20 мА. Это могут быть как сверхъяркие led в DIP корпусе с прозрачной линзой, так и smd3528. Всего их в данной схеме бегущих огней 13 шт. В качестве ограничителей тока выступают резисторы R6-R18.

Нумерация светодиодов на схеме указана в соответствии с прошивкой.

Через цифровые входы PD0-PD3, а также с помощью кнопок SB1-SB3 и переключателя SA1 производится управление работой схемы. Все они подключены через резисторы R2, R3, R6, R7. На программном уровне предусмотрено 11 различных вариаций мигания светодиодов, а также последовательный перебор всех эффектов. Выбор программы задаётся кнопкой SB3. В пределах каждой программы можно изменять скорость её выполнения (мигания светодиодов). Для этого переключатель SA1 переводят в замкнутое положение (скорость программы) и кнопками увеличения (SB1) и уменьшения (SB2) скорости добиваются желаемого эффекта. Если SA1 разомкнуть, то кнопки SB1 и SB2 будут регулировать яркость светодиодов (от слабого мерцания до свечения на номинальной мощности).

Печатная плата и детали сборки

Специально для начинающих радиолюбителей предлагаем два варианта сборки бегущих огней: на макетной и на печатной плате. В обоих случаях рекомендуется использовать микросхему в PDIP корпусе, устанавливаемую в DIP-20 панельку. Все остальные детали также в DIP корпусах. В первом случае достаточно будет макетной платы 50х50 мм с шагом 2,5 мм. При этом светодиоды можно разместить, как на плате, так и на отдельной линейке, соединив их с макетной платой гибкими проводами. плата

Печатную плату в формате .lay6 можно скачать здесь.

Если бегущие огни на светодиодах предполагается активно использовать в дальнейшем (например, в автомобиле, велосипеде), то лучше собрать миниатюрную печатную плату. Для этого понадобится односторонний текстолит размером 55*55 мм, а также радиоэлементы:

  • С1 – 100 мкФ-6,3В;
  • DD1 – ATtiny2313;
  • HL1-HL13 – LED любого цвета диаметром 3 мм;
  • R1 – 10 кОм-0,25 Вт±5%;
  • R2-R18 – 1 кОм-0,25 Вт±5%;
  • SB1-SB3 – тактовая кнопка KLS7-TS6601 (любая аналогичная);
  • SA1 – трёхвыводной движковый переключатель ESP1010.

Для тех, кто имеет опыт изготовления печатных плат, лучше использовать ATtiny2313 форм-фактора SOIC, а также smd резисторы. Это позволит уменьшить размеры устройства примерно в 2 раза. Также можно взять сверхъяркие smd светодиоды и разместить их отдельным блоком.

Прошивка

Для прошивки МК ATtiny2313 следует использовать самодельный программатор, подключаемый к RS-232 компьютера и известный многим PonyProg2000. Перед прошивкой необходимо выставить фьюзы в соответствии с таблицей.флюизы

Прошивку для бегущих огней на ATtiny2313 можно скачать здесь.

Бегущие огни на светодиодах – один из вариантов автоматического устройства, основанного на осветительных приборах типа LED или более простых видах, которые достаточно широко применяются в рекламных световых конструкциях, а также в автомобильной промышленности. По своей сути это устройство, которое управляет светодиодами и приборами на их основе строго в соответствии с программой, заложенной в микросхеме.

Весьма популярны при управлении световыми приборами устройства, построенные на основе программируемых контроллеров. По такому принципу работает большая часть бегущих огней. К числу массовых, наиболее распространенных микросхем управления можно отнести восьмиразрядную микросхему-контроллер с накопителем памяти PIC12F629. И простейший прибор, который можно сделать своими руками с его применением – это реверсивные бегущие огни, т. е. выполняющие попеременное возвратно-поступательное включение светодиодов или иных источников света.

Схема подобного прибора достаточно проста и содержит только управляющее устройство с уже заложенной в память соответствующей программой. Напряжение подается от источника стабилизированного питания пяти или двенадцати вольт с применением дополнительного интегрального стабилизатора.

Простая схема бегущих огней
Простая схема бегущих огней

Шестнадцать светодиодов, выстроенных в любом необходимом мастеру порядке, располагаются на текстолитовой основе и коммутируются в такой последовательности, которая требуется для заданной цели. Такой прибор очень экономичен в энергопотреблении как от 12, так и от 5 вольт с общим током около 20 миллиампер.

Подобные бегущие огни можно с успехом применять в автомобиле в качестве дополнительного стоп-сигнала, т. к. светодиоды будут поочередно включаться до тех пор, пока на устройство будет подаваться питание.

Более сложные устройства

Для устройств со сложными алгоритмами переключения применяются более высокотехнологичные микропроцессоры. Схему бегущих огней на светодиодах подобного типа можно увидеть на рисунке ниже. Для того чтобы сделать их своими руками, понадобится изготовление мультивибратора, основанного на микроконтроллере DD1 K561ЛА7, а также микросхеме-счетчике DD2 К561ИЕ8.

При помощи первого будет создаваться импульс, включаться тот или иной светодиод. Счетчик же будет переключать питание по группам источников света. Таким образом, возможна реализация такого устройства, как бегущие огни с выбором программ.

Ниже приведена схема подобных бегущих огней. Усилитель сигнала основывается на транзисторах VT1 и VT2, которые открываются при подаче напряжения со счетчика. В качестве фильтра используется конденсатор С2 и С3. Ну а С1 регулирует периодичность подачи.

Смонтировать подобное устройство бегущих огней можно на печатной текстолитовой плате размером всего 3.7 х 5 см, т. е. объемом со спичечный коробок.

Схема более сложного устройства
Схема более сложного устройства

Согласно схеме, светодиоды по группам подключаются к трем выводам. Количество световых элементов зависит от питающей мощности, но не стоит формировать очень большие группы во избежание перегрузки питающей сети.

Желательно также обеспечить защиту транзисторов КТ972А теплоотводящими радиаторами. Кстати, их можно заменить чуть менее мощными аналогами, а именно КТ315 или же КТ815 – все это уже на усмотрение мастера, на изменения в работе самой схемы это никак не влияет.

Такие элементы, как DD1.1 и DD1.2 выполняют функции генерирования импульса, подаваемого на счетчик.

При подборе сопротивления R6 необходимо учитывать, что номинальное его значение не должно быть меньше 1 килоома.

Конечно, сами светодиоды монтируются на отдельной платформе. Хотя если подобное устройство предназначается для использования в качестве бегущих огней на стоп-сигнале автомобиля и заводские огни состоят из светодиодов, можно подключиться непосредственно к ним. Это избавит от лишней работы по монтажу и коммутации новой платформы под световые элементы.

Одна из областей применения бегущих огней – реклама
Одна из областей применения бегущих огней – реклама

Заключение

Даже имея незначительный опыт в электротехнике и радиоэлектронике, собрать схему бегущих огней вполне возможно. Но уж если с такими знаниями совсем никак, а установить огни на свой автомобиль есть большое желание, тогда есть смысл приобрести уже готовое устройство. На сегодняшний день на прилавках автомагазинов, да и магазинов электротехники такие приборы представлены в огромном ассортименте. В подобных конструкциях будет присутствовать больше функций, таких, например, как включение или мигание стоп-сигнала при аварийной остановке, движении назад и т. п.

Бегущие огни в стоп-сигналах автомобиля – это не только дань эстетике, но еще и безопасность. Ведь мигающий или двигающийся огонек всегда более заметен, чем статично горящий. А потому установка подобного устройства всегда желательна.

Схема бегущих огней на микросхемах

В этой статье разберем такой вопрос, как  схема бегущих огней на светодиодах. Эти схемы могут быть использованы на автомобиле, мотоцикле, велосипеде и т. Д., Поскольку они будут привлекать внимание зрителей.

Мы создали 3 различных схемы бегущих светодиодных ходовых огней, используя очень простые компоненты.

В первой схеме мы реализовали мигающие светодиоды с помощью транзистора на основе Astable Multivibrator.

Вторая схема основана на микросхеме CD4017, где у нас есть светодиоды Chasing. При этом светодиоды просто включаются один за другим последовательно.

Третья схема также реализована с использованием CD4017. В этой схеме светодиоды будут светиться другим образом, то есть двухходовыми светодиодами.

Эти схемы могут быть использованы для украшения автомобиля или может быть полезна во время аварийной остановки, когда ваш автомобиль сломался и вам нужна помощь.

Мы увидим детали каждой из этих цепей, такие как принципиальная схема, необходимые компоненты и работа в следующих разделах.

к оглавлению ↑

Простая схема бегущих светодиодных огней

Простая схема бегущих светодиодных огней

к оглавлению ↑

Компоненты для этого проекта

2 х 2N2222A (NPN Транзистор)2 x 22 мкФ — 50 В конденсатор (поляризованный)Резистор 2 x 46 кОм (1/4 Вт)Яркий белый светодиод 6 х 8 мм12 В блок питания

к оглавлению ↑

Принцип работы

Из принципиальной схемы ясно, что проект основан на простом Astable Multivibrator. При включении цепи один транзистор будет включен (в режиме насыщения), а другой будет выключен (в режиме отсечки).

Предполагая, что Т1 включен, а Т2 выключен, конденсатор C2 будет заряжаться через последовательные светодиоды. Поскольку светодиоды подключены на пути тока, они загорятся.

В течение этого времени транзистор Т2 выключен из-за разрядного конденсатора С1 (поскольку отрицательная пластина подключена к базе Q2). После постоянной времени C1R1 конденсатор C1 полностью разряжается и начинает заряжаться через R1.

Направление зарядки обратное. Когда конденсатор заряжается, он создает достаточное напряжение (0,7 В) для включения транзистора Т2. В это время конденсатор C2 начинает разряжаться через Q2.

Когда пластина конденсатора C2, которая подключена к базе транзистора Т1, становится отрицательной, транзистор Т1 выключается, и этот набор светодиодов выключается.

Теперь конденсатор C1 начинает заряжаться от соответствующих последовательных светодиодов (через базу Т2). Так как этот набор светодиодов подключен в текущем тракте, они будут включены.

Теперь конденсатор С2 разряжается и после полной разрядки начинает заряжаться через R2. Когда заряд накапливается в конденсаторе C2, когда напряжение достигает 0,7 В, он включит транзистор Т1. С этого момента процесс повторяется, как и раньше. Соответственно создается эффект бегущих огней.

к оглавлению ↑

Схема бегущих светодиодных огней на микросхеме

Схема бегущих огней на микросхемах

Вторым проектом в серии бегущих светодиодных огней является схема с использованием счетчика CD4017 Decade Counter и 555 таймера IC.

к оглавлению ↑

Необходимые компоненты

1 х CD4017 декадный счетчик IC1 х 555 таймер ICРезистор 1 x 18 кОм (1/4 Вт)1 х 2,2 кОм резистор (1/4 Вт)Потенциометр 1 х 100 кОм1 х 1 мкФ — 50 В конденсатор (поляризованный)Керамический дисковый конденсатор 1 х 0,1 нФ (код 100 пФ 101)10 х 8 мм ярко-белые светодиоды5 В блок питания

к оглавлению ↑

Принцип работы схемы бегущих огней на LED, используя микросхему

В этом проекте мы разработали простую схему , в которой светодиоды включаются один за другим и дают нам эффект одного светодиода, гоняющегося за другим. Посмотрим как это работает.

Первое, что видно на принципиальной схеме — есть две части: часть таймера 555 и часть интегрального счетчика CD4017 со светодиодами. ИС таймера 555 в этом проекте настроена как нестабильный мультивибратор.

В этом режиме он генерирует импульс, частота которого определяется компонентами R1 (2,2 кОм), R2 (18 кОм), VR1 (100 кОм) и C1 (1 мкФ). Частотой импульса можно управлять, регулируя POT 100 кОм.

Этот импульс подается на ИС счетчика декадных сигналов CD4017 в качестве его тактового входа. Понимая работу CD4017, для каждого тактового импульса, который он получает на входе тактового входа, счет увеличивается на 1, и в результате каждый выходной контакт будет ВЫСОКИМ для каждого соответствующего тактового импульса.

Так как это десятичный счетчик, мы получим счет 10, и, поскольку мы подключили ярко-белые светодиоды к выходным контактам, каждый светодиод включится, когда соответствующий контакт станет ВЫСОКИМ.

После 10 тактовых импульсов отсчет сбрасывается и начинается с начала. Если светодиоды были размещены по кругу, мы получаем ощущение погони за светодиодами.

к оглавлению ↑

Двухполосная схема бегущих огней на светодиодах

Схема бегущих огней двухполоснаяЭто еще одна работающая схема, но разница между этой и предыдущей заключается в том, что в предыдущей схеме она была разработана как односторонняя цепь светодиодов, тогда как в этой схеме светодиоды будут работать двумя способами.

к оглавлению ↑

Компоненты для сборки этой цепи

1 х CD4017 декадный счетчик IC1 х 555 таймер ICРезистор 1 x 18 кОм (1/4 Вт)1 х 2,2 кОм резистор (1/4 Вт)1 х 470 Ом резистор (1/4 Вт)Потенциометр 1 х 100 кОм1 х 1 мкФ — 50 В конденсатор (поляризованный)Керамический дисковый конденсатор 1 х 0,1 нФ (код 100 пФ 101)8 х 1N4007 PN диоды переходаЯркие белые светодиоды 11 х 8 мм

к оглавлению ↑

Принцип работы двухполосной системы

Работа над проектом двухсторонних светодиодов аналогична предыдущему проекту, за исключением того, что ориентация светодиодов отличается.

Часть таймера 555 (операция аналогична описанной в приведенной выше схеме) генерирует импульсный сигнал, который подается на счетчик CD4017 в качестве входа тактовой частоты. LED6, который подключен к Q0 CD4017, загорится первым.

LED5 и LED7, которые подключены к Q1 CD4017, загорятся рядом. Соединения продолжаются, как показано на принципиальной схеме, и этот процесс продолжается до Q5, который подключен к LED1 и LED11. До этого этапа одностороннее освещение светодиода будет завершено.

Чтобы добиться двухстороннего освещения светодиода, Q6 подключен к LED2 и LED10, Q7 подключен к LED3 и LED9 и так далее.

Конечный эффект будет состоять из двухходовых светодиодов, и последовательность будет следующей: LED6 (Q0), LED5 — LED7 (Q1), LED4 — LED8 (Q2), LED3 — LED9 (Q3), LED2 — LED10 (Q4) , LED1 — LED11 (Q5) в одну сторону и затем LED2 — LED10 (Q6), LED3 — LED9 (Q7), LED4 — LED8 (Q8), LED5 — LED7 (Q9).

В принципе, на это можно завершить наше повествование о том, каким образом раюотают бегущие светодиодные огни и какие схемы можно использовать в этих случаях. Показанные примеры — достаточно сложны для пониманиЯ, но просты для того, чтобы сделать их своими руками. И если вы не понимаете ничего в электронике, то просто спаяв все детали, как показано на схемах, вы обязательно получите конечный продукт — бегущие светодиодные огни, работающие в разных режимах.

Добавить комментарий